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A numerical model of the air flow above water waves 
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(Received 18 July 1975 and in revised form 22 December 1975) 

A numerical model is proposed for the flow in a deep turbulent boundary layer 
over water waves. The momentum equations are closed by the use of an isotropic 
eddy viscosity and the turbulent energy equation. For small amplitudes the 
results are similar to those of Townsend’s (1972) linear model, but nonlinear 
effects become important as the ratio of wave height to wavelength increases. 
With uniform surface roughness xo, the predicted fractional rate of energy input 
per radian advance in phase, 5, decreases slightly with increasing amplitude and 
is of the same order of magnitude as in Miles’ (1957, 1959) and Townsend’s linear 
theories. If xo is allowed to vary with position along the wave, however, the 
fractional rate of energy input can be significantly increased for small amplitude 
waves. If the variation in zo is half the mean value and the maximum wave slope 
ak is 0.01, we find 6 z 60 (pair/pwater) ( U ~ / C ) ~ ,  where uo is the friction velocity and c 
the wave phase speed. Comparison is also made with recent laboratory and field 
data. 

1. Introduction 
The theories of wind wave generation due to Miles (1957, 1959), Benjamin 

(1959) and others, based on linearization in terms of the maximum wave slope ak, 
predict a rate of energy input that gives wave growth rates which are approxi- 
mately an order of magnitude less than those found in the early field studies of 
Snyder & Cox (1966) and Barnett & Wilkerson (1967). This dichotomy was not 
resolved by Dobson (1971), whose direct measurements of energy input to the 
waves gave a wave growth rate similar to the previous sea studies, or by the new 
turbulent, but still linear, theories of Townsend (1972) and Long (1971), which 
gave energy input rates similar to the earlier laminar and inviscid theories. More 
recently several other studies have been made, both in the sea, by Elliott (1972), 
Hasselmann et al. (1973) and Snyder (1974), and in the laboratory, by Shemdin 
(1969). They all give rates of energy input which are very much closer to the 
theoretical predictions. The JONSWAP studies (Hasselmann et al.) confirm that 
nonlinear wave interactions can be primarily responsible for wave growth at 
wavenumbers less than that corresponding to the peak in the energy spectrum. 
This additional wave growth mechanism clearly confuses our interpretation of 
observed rates of wave growth at a particular wavenumber, and direct measure- 
ments of energy input from the wind are to be preferred for comparisons with 
our present model. 
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It is hoped that the nonlinear numerical computations of flow over waves to be 
presented here may help to indicate the importance of nonlinear effects and 
predict theoretically the rates of energy input for much larger amplitude waves 
than was possible before. It should be remarked, however, that our theory applies 
to the steady flow of air above an infinite train of monochromatic two-dimensional 
waves. Should nonlinear effects be important the application to wind wave 
generation by flow above a random sea can only be qualitative. In  addition to 
considering nonlinear effects our numerical model enables us to consider the 
result of allowing the surface roughness to vary along the wave. This roughness 
variation could be caused by the presence of much smaller gravity and capillary 
waves riding on the dominant wave. These are generated by a nonlinear transfer 
of energy from the dominant wave, and are steepest just forward of the wave 
crest; see Longuet-Higgins (1969a). We might then reasonably expect the 
maximum roughness to occur at about in- forward of the crest. It is of interest to 
note that these smaller waves have recently been observed in the laboratory to 
be carried along at the phase speed of the dominant wave and thus do not satisfy 
the dispersion relation. The direct generation of small gravity and capillary waves 
by the wind (which has recently been studied by Larson & Wright 1975) is not 
included in the present model. Our numerical experiments with zo varying along 
the wave predict a considerable increase in the rate of energy input to the waves, 
especially for small amplitude. 

For a more thorough review of wind wave generation and associated topics, 
the reader is referred to the recent review by Barnett & Kenyon (1975). 

2. Hypotheses and the equations of motion 
The problem considered is that of steady two-dimensional flow in a deep 

turbulent boundary layer above water waves. The waves are assumed to be 
periodic in x with wavelength L and, initially, to have a uniform surface rough- 
ness zo. The flow is driven by a horizontal kinematic shear stress ut applied a t  the 
top of the model above the region affected by the waviness of the surface. We 
work in a frame of reference moving with the waves. The shape of the waves is 
given by the parametric form 

zb = -acosk[, x = c+asink[, (2.1) 

where k = 2nlL. This results from the conformal mapping used to transform 
x, z space into a rectangle in [, 7 space, namely 

@ = lif - ia exp [&$I, (2.2) 

where 4 = x t i z  and 9 = E+iy with the wave surface given by 7 = 0. We pre- 
ferred this to the mapping used by Benjamin (1959) because, in our case, as the 
amplitude a increases the wave crests become shorter and steeper. We can 
expand (2.1) to give 

zb = -a  COB kz + &a2k(cos 2kx- 1) + O(a3k2), (2.3) 

so that to second order the wave form agrees with that of Stokes waves (see Lamb 
1932, art. 250). Sea waves, however, do tend to be even sharper crested and 
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smoother troughed. The Jacobian of the transformation (2.2) is defined by 

and the inviscid incompressible equations of motion may be written as 
J = r)/a(x,  z )  = p$/wl-2, (2.4) 

UUE+ WU,-(2J)-1(J,UW-JgW2) = -pt, (2.5) 

U%+ W%-(2J)-l(JSUW-4U2) = -pV (2.6) 

and (J-*U)E+(J-*W), = 0. (2.7) 
Here U and W are velocities parallel to the t,q co-ordinate system. The flow 
variables can be separated into their mean and turbulent fluctuating parts by 
putting U = u+u’, etc. The equations are then ensemble averaged and the 
system closed by relating the Reynolds stresses to other flow variables. We use 
turbulent closure hypotheses which are similar but not identical to those of 
Townsend’s (1972) linear theory in preference, for the present, to more complex, 
higher-order closure schemes. The particular system used is based on the isotropic 
eddy viscosity model described by Hinze (1959, p. 21), which takes the form 

- -  
- u!u! + %Edij = Keij. 

2 3  

Here eij is the rate-of-strain tensor ( = (aui/axj) + (auj/axi), in Cartesian co- 
ordinates) and 

is the mean turbulent kinetic energy per unit mass. Our eddy viscosity K is 
defined by 

where l / A  is the equilibrium value of z/u& This form for K involves the local 
value of E and so the turbulent energy equation must be added to our system of 
equations. The mixing length Z is given by 

K = (hZ)iZ, (2.9) 

where K is von Kkm&n’s constant (taken equal to 0.4). Thus I is proportional to 
s + z,, where 

s = s,” J d d q  

is the normal distance from the wave when 7 is small, but is proportional to the 
distance from the mean surface when q is large (see Townsend 1972). For two- 
dimensional flow we find from (2.8) that el, = e23 = eZ2 = 0. Thus the component 
3 of the turbulent energy in the cross-flow direction is always $3. The Reynolds 
stresses are given in curvilinear co-ordinates by 

- 
(2.11) 1 T = -u’w‘ = K[(J iU) ,  + (J*W),], 

-p+ %,@ = P- $,@ = K[(J)8)E- (Jim)V]. 
I n  place of the above hypothesis Townsend assumed the Reynolds stresses 

to be fixed proportions of the turbulent kinetic energy and commented against 
the use of an isotropic model. Our reason for using the isotropic model is basically 
that we wanted the shear stress r to include the second term on the right-hand 
side of (2.11). This can be important, when the wave amplitude is large, in places 
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where the first term of the right-hand side of (2.11) is small. Use of this form for 
7 without the expressions for the diagonal elements of (2.11) inevitably leads to 
computational instability owing, in effect, to a negative horizontal diffusion of g .  
A disadvantage of the isotropic model is that it gives a value of uQ/w12 which varies 
near unity whereas atmospheric observations over land (Busch 1973) suggest a 
a value of three. A closure hypothesis which avoids this contradiction by con- 
sidering stresses in a frame of reference orientated parallel and perpendicular 
to the local flow direction might be possible. It would, however, involve con- 
siderable additional complication which we felt was not worthwhile. Taylor, 
Gent & Keen (1976) compare results over a fixed wavy boundary with both the 
isotropic model used here and a boundary-layer style of approximation in which 
the last term in the bracket of the expression for 7 in (2.11) is ignored and a fked 
partition of turbulent energy is assumed. They found that the results of the 
latter model were insensitive to the precise partition of turbulent energy and 
showed that differences between surface values predicted by the two models 
were small. The justification for use of the isotropic model is admittedly prag- 
matic and rather weak on physical justification. We think it worth emphasizing, 
however, that our results will be relatively insensitive to the detailed nature of 
these closure hypotheses, provided that any length scale introduced is equal to 
K(S + z0) near the surface. This view is supported by Reynolds & Hussain (1972), 
who decided to use an eddy viscosity model but then found the results were “not 
substantially different” whether i t  was a constant or a prescribed function of 
height, but contrasts with the approach of Davis (1972), who found considerable 
variation between the results obtained with four different, and rather speculative 
turbulence models. Our aim here is not to investigate new turbulence closure 
methods but to apply a variant of the traditional closure for turbulent boundary 
layers to a new flow situation. This type of experiment can, we believe, aid in 
understanding the overall physics of the flow while comparisons with experi- 
mental or field data may in turn help in improving the basic closure hypotheses 
assumed. 

The equations to be solved numerically in conservation form can be written 
as follows. 

Momentum : 

-- 

J - -  Jg - 
(P),+ (DW), +$ - 5 UW+ - (W2- D2) 

2J 
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Continuity : (J- ia)5+(J-4W),  = 0. 
Turbulent energy : 

2 -  (UE)t + (WE)? - g [ U 4  + WJ?] 
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(2.14) 

= JdK[(J4U) ,+  (J4F)5]2+J4(KE,),+ J4(K,!?5)E 

+ J-4K[(J4u)t- (JtW),lz-  J-4- (2.15) 

where p)*= 3 + 88. 
I n  the turbulent energy equation, the dissipation B has been assumed to be 

equal to (AE)Z/K = (A,!?)+/Z, and the diffusive fluxes have been assumed to be of a 
gradient form given by 

K ’  

- -  - -  
~ ‘ p ’  + u’E~ = - J4KEE, W’P’ + w’El = - JiK,!?,,, (2.16) 

3. Boundary conditions and numerical method 
In  most turbulent boundary layers the appropriate vertical co-ordinate is 

p=ln?*), 

and so (2.12)-(2.15) were transformed to a [ , p  system prior to their numerical 
solution in the rectangle 

Here 7 = H is the top of the integration region. We have taken H N 1-2L in most 
of the runs as tests with deeper regions showed only small changes. The equations 
were solved in a frame of reference moving with the waves a t  speed c. If we make 
allowance for the first-order velocities in the wave itself, assuming irrotational 
flow, the boundary conditions on the Cartesian velocities (V,, W,) at the lower 
boundary can be written as 

I V, = - C[ 1 + ak cos kt] + O(ak)’, 
W ,  = - cak sink5 + O(ak)2. (3.3) 

- -  
In  terms of U, W parallel to the t, ,u co-ordinates this gives the boundary condi- 
tions to be imposed as 

J * U = - c ,  W = O ,  E P = O  a t  p = O ,  
- 

The boundary condition of no flux of turbuIent energy into the wave was 
thought to be the most appropriate to describe the physical situation. If  T = A,!? 
were used as an alternative, appropriate to the constant-flux layer very close to 
the surface, the boundary condition would be slightly different since T~ 9 0 at the 
water surface. Computations made with the two boundary conditions showed 
changes in the results of less than 1 yo. We also require periodicity in x or 5 so that 
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all variables have the same value a t  6 = 0 and L. Velocities were scaled with 
respect to the friction velocity uo and lengths with respect to the surface roughness 
zo to give a non-dimensional set of equations. The method used to solve the 
equations is based on the technique of artificial compressibility due to Chorin 
(1967), which introduces time derivatives into (2.12), (2.13) and (2.15). An initial 
profile was set up with 

- 
uz = ( , U / K ) - C ,  r = 0, 'p* = 0, Bz = 1/A (3.5) 

everywhere and then the program marched forward in time determining new 
values of U ,  E and until a steady state was achieved. The updated pressure 
field is found from (2.14) in the form 

- -  

1 -  
-pt* aJ + (J-iD),+ ( J - W ) ,  = 0, 

where the artificial compressibility factor a must satisfy 
- -  

a+ > max[U, W ] ,  (3.7) 

i.e. the flow must be subsonic with respect to the artificial sound speed at. The 
integration technique uses a block iterative method in the vertical so that the 
stability restriction on the time step is only governed by the horizontal grid 
spacing. For a typical case we found that about 8000 cycles were needed to reach 
a steady state taking 2 min of CDC 7600 time with a 10 x 10 grid. Test runs were 
made using a finer, 20 x 14 grid but the results were essentially unchanged and 
the coarser grid has been used to reduce the computer time used. A steady state 
was judged to have been reached when the results changed by less than 8 % over 
the last thousand cycles. Checks on the results were that the pressure field decayed 
away to zero a t  the top of the model and that an overall momentum balance was 
satisfied. I n  particular, the average horizontal force on the waves due to normal 
pressure and shear stress should sum to u$ This was achieved to within about 
2 yo with the 10 x 10 grid. 

4. Results 
All results presented here are for 

R = -ln(kze) = 8, (4.1) 

following Townsend's (1972) notation. If we take zo = 0.01 cm, the waves then 
have L = 1-873m and c = (g/k)a = 1.71 m/s. This value of zo gives V,  II 27u0, 
where U, is the velocity at a height of 5 m calculated from the logarithmic formula 

for flow over a plane surface. The depth of the integration region is 2-2m.  I f  
c = 824, then uo = 21.4 cm/s and U5 = 5-78 m/s while if c = 12u0, uo = 14.25 cm/s 
and U5 = 3-86rnls. 

We first look a t  the results of a typical case, chosen to be c = 8u0 and 
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FIGURE 1. Surface pressure and shear stress. R = 8, c = 8u0, ak = 0.157, constant zo. 

u = 0.025L (ak = 0.157). Figure 1 shows the surface pressure and shear stress 
distributions plotted against €JL. Both curves show considerable differences from 
the pure sinusoidal form of the lower boundary. This is especially noticeable in 
shear stress, where the distribution shows a distinct asymmetry with the extrema 
separated in the ratio 0.38:0.62 measured in terms of (/L. This asymmetry 
increases with wave amplitude. As ak increases the pressure minimum remains 
virtually fixed just forward of the crest, but the pressure maximum, which starts 
almost exactly 180" out of phase with the minimum when ak is small, migrates 
forwards from the wave trough, thereby causing the field to become asymmetric. 
Figure 2 shows contours of shear stress. The most interesting features are the 
elevated extrema, which occur roughly 180" out of phase with the surface 
extrema. The elevated minimum is over the wave crest and the elevated maximum 
over the wave trough. The elevated extrema occur at a height of about 0.1L and 
are much more extensive than the surface features-note that figure 2 has a 
logarithmic vertical scale. Thus the elevated stress pattern is much more likely 
to be observed in any field measurements of stress since, in order to reveal 
surface features, measurements would have to be made within about 0-005L of 
the wave surface. Turbulent energy contours are plotted in figure 3 and show 
the same general features as those of shear stress with all four extrema in very 
similar positions. The biggest difference is that the elevated extrema of turbulent 
energy are not as extreme as those of shear stress. This was also found in the case 
of flow over a fixed boundary (see Taylor et al. 1976). 

Figure 4 is a plot of ( g  - uz)/uo against ,u where nz is the initial profile defined 
in (3.5), which would be the profile if the surface was flat. Near the top of the 
model - gz is a constant. This 
difference, which is due to the form drag of the surface, is always negative when zo 
is constant and increases monotonically with increasing amplitude. It is found to 
be virtually independent of c/uo. In  figure 4 the difference is - 1.35u0, so that the 
value of U, when ak = 0.157 should be reduced by 5 yo compared with the value 

has returned to a logarithmic form, so that 
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FIGURE 2. Shear stress contours, same run as figure 1. 

E F  
FIGURE 3. Contours of turbulent kinetic energy, same run as figure 1. 
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FIGURE 4. Horizontal velocity ( g  - ~ ' ) / u o  plotted against height, 
same run as figure 1. 

F I G U R E  5. Streamlines in the wave trough, same run &s figure 1. 
Vertical scale x 10. 

of 27u, over a flat surface. Figure 4 also shows that matching the first-ordetwater 
particle velocities in the wave means that - uI a t  the surface is negative in the 
trough but positive a t  the crest. Near the surface the velocity shear is larger a t  
the crest than at the trough but abovep = 5.5 or a height of 0.015L the situation 
reverses with the larger shear over the trough. Figure 5 shows some streamlines 
of the flow calculated from 

8 FLY 77 
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and plotted in x and z. The vertical scale is multiplied by a factor of ten, and the 
frame of reference is travelling with the waves. The figure shows a region of closed 
streamlines in the wave trough. This is deepest about 36" backwards from the 
trough itself and a t  this point is 0.01L or 0.4a deep. The depth and height above 
the wave of the region of closed streamlines depends critically upon the phase 
speed of the wave c .  When c/uo is small the region is thin and occurs just above 
the wave surface. As c/uo increases, however, the region becomes deeper and also 
occurs much higher above the surface, so that when c = 2024, the region of closed 
streamlines starts around 0-IL and has a maximum depth of 0-15L. It may be 
remarked, however, that for reasonable values of c/uo, velocity measurements 
must be made very close to the surface, certainly within a small fraction of the 
wave amplitude, in order to be able to detect the region of closed streamlines 
predicted by this model. 

Two series of runs have been made with fixed values of c/uo and increasing 
amplitude. The results are given in tables 1 and 2 .  From table I, with c = 8uo, 
we note that for small amplitude the phase of the pressure maximum forward 
from its equilibrium position over the trough is 16" whereas Townsend predicts 
11". The position of the pressure maximum is important in determining the rate 
of energy input to the wave by the normal pressure (( - c ( p  + w7) (dzb/dx)), 
where the angle brackets denote an average over the wave form). The nearer the 
pressure maximum is to 90" forward of the trough the greater the amount of work 
that can be done on the wave. Table 1 clearly shows that the phase shift forwards 
from the trough increases with wave amplitude and reaches a value of 83" when 
ak = 0.314. Attempts to obtain results for ak > 0.314 have been unsuccessful, 
and even at 0.314, the results are becoming unsatisfactory. The magnitude of the 
pressure wave increases up to a maximum when ak is about 0.157 and then 
decreases again. Expressed as a multiple of ak, however, it  decreases monotonically 
as ak increases. This combination, of a favourable phase shift but decreasing 
amplitude for the pressure, results in a decrease in the fractional rate of energy 
gain per radian advance in phase, 5, as ak increases. Table 2, with c = I 2u0, reveals 
a similar pattern with the fractional rate of energy supply falling slowly with 
increasing amplitude as the pressure phase increases towards 90" but then 
decreasing rapidly as the pressure maximum moves forwards past the optimum 
position. It should be noted, however, that the quantities are scaled with respect 
to the total horizontal stress on the water surface, u;, and that this could be 
expected to increase slightly with increasing wave amplitude if, for example, U ,  
were regarded as fixed. The values of the pressure contribution p z  in tables I 
and 2 can be interpreted as the rate of energy supply as a proportion of the maxi- 
mum possible, pairugc. We note that although 6 decreases as ak increases, this is 
inevitable if u,, is regarded as fixed, since the wave energy is proportional to a2. 
For ak = 0.157, figures of 20 yo and above for the proportion of the available 
energy going into the waves are very satisfactory. 

The phase of the surface shear stress maximum is measured from the wave 
crest and the results confirm Townsend's (1972) conclusion that both pressure 
and stress maxima occur on the backward slope of the wave. Increasing amplitude 
has less effect on the surface stress than on the pressure in the sense that the 
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FIUURE 6. Phase difference of pressure maximum measured from the wave 
trough against UJc. Constant zo;  +, ak = 0.01; x , ak = 0.187. 
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FIGURE 7. Fractional rate of energy gain per radian advance in phase, 
5, against UJc. Same notation as figure 6. 
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position of the stress maximum and the magnitude of the stress field, expressed 
as a multiple of ak, change little. Thus our results for shear stress, in this respect, 
agree with those from a linear theory which predicts a fixed phase shift and fixed 
magnitude, expressed as a multiple of ak, for all wave amplitudes. A simple 
linear theory, however, is unable to predict the considerable distortion from a 
sinusoidal form found in our surface stress distributions. 

Table 3 shows other runs at various values of c/uo. I f  we regard zo and the 
wavelength as fixed, this determines c through the dispersion relation, and 
changes in c/uo represent changes in the value of u, and hence in the wind speed 
U5 at 5 m. For these results, the phase shift of the pressure maximum is plotted 
against U5/c in figure 6 and is compared with Townsend's (1972) results. The lines 
shown joining the phases for ak = 0.01 and 0.157 are intended to indicate the 
range for intermediate values of ak. However, intermediate values may lie 
outside the limits shown, and this occurs, for example, when c = 16u, on figure 6. 
The results show a very rapid movement of the pressure maximum from near 
zero when c = 2024, to a maximum of about 90" when c = 16u,. The phase shift 
then gradually reduces as c/uo decreases further. I n  order to present our results 
in terms of both U5/c and c/uo we have set U, = 27u0, the value for flow over a plane 
surface with zo = 0.01 em, rather than adjusting it for each amplitude. Figure 7 
shows the predicted rate of energy gain per radian advance in phase, (5, plotted 
against U5/c. We again anticipate that values of ak between 0.01 and 0.157 will 
usually give intermediate values of (5. Note that the higher values of 5 correspond 
to  the lower values of ah. These (5 values are significantly higher than those 
found by Townsend for U5/c > 4 owing to differences in the predicted pressure 
phase for these cases. 

5. Variable roughness length 
I n  order to try to model the effect of small capillary a.nd short gravity waves 

which are often present near the crest of larger waves, 2, was allowed to vary 
with 5, taking the form 

Zo is now the average value of zo and is used as the length to non-dimensionalize 
the equations. Variable 2, was introduced into the program by using a wall- 
layer approximation for the bottom three grid points of the finite-difference mesh. 
Three grid points were used as the best balance between using a shallow enough 
region where the wall-layer approximation is valid, and a deep enough region to 
incorporate the effects of varying 2,. The depth is approximately 202,. In  the 
wall layer equation (2.12) is approximated by 

2, = xo[l-~COS(k[-6)]; (5.1) 

using a boundary-layer approximation where vertical derivatives are much 
larger than horizontal derivatives and 3 v. If S/J is assumed independent 
of 7 in the wall layer and if y5 is defined such that #([) = $, then (5.2) can be 
integrated with respect to r ]  to give 

K(J iB) ,  = $v+T,, (5.3) 
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FIGURE 8. Horizontal velocity (u-  uI)/uo plotted against height for 
R = 8, c = 12uo, ak = 0.157, y = 0.75 and 8 = &T. 

where 70(<) is the surface shear stress. The dominant terms retained in the 
turbulent energy equation (2.15) are the production and dissipation terms, so that 

J A K  [(J*U),I2 = J-&(AE)'/K. (5.4) 

Taking the square root gives 

hB = K(J+U)? = $7+70, (5 .5 )  

or 7 = hB in the wall layer. Elimination of B gives an:equation:for J 4 0  which, 
when 7,, B $7, can be integrated to give 

where zo is now taken as a function of 6, and the length I is approximated by 

I Z K(S+Zo)  W K ( J - 4 7  +ZO). (5.7) 

The profiles of U and E within the wall layer were assumed to be of the form given 
by (5.5) and (5.6), but (5 .5 )  now requires the lower boundary condition on 
turbulent energy to be 

= at ,u = 0. (5 .8)  

This boundary condition was used for mathematical convenience as no way 
could be found to introduce the wall-layer approximation with the boundary 
condition P ,  = 0. 

I n  the absence of any precise observations, the phase 6 of the surface roughness 
perturbation was given the value in so the maximum occurs 45' forward of the 
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FIGURE 9. Cartesian velocities for same run as figure 8. Vertical scale x 10. 

wave crest (see Keller & Wright 1975). The results of several runs are given in 
table 4. A few other runs were performed with S = 0 and in and these are listed in 
table 5. The amplitude y of the x,, variation could possibly be a large fraction of 
the mean value and initially we put y = 0.75. However, we felt this value to be 
rather high for very small amplitude waves and made further runs with y = 0.5 
when ak = 0.01 and y = 0.6 when ak = 0.05 (see table 4). The results show that, 
for very small amplitude, the variable surface roughness has a dramatic effect 
upon the flow and upon the fractional rate of energy input. This can easily be 
made three times the value for constant zo, and is five times greater in the 
extreme runs with y = 0.75 and S = in. This stems from the distribution of 
pressure, which, for 8uo < c < 12u0 and small amplitude, is found to be nearly 
180" out of phase with the xo distribution. This does not hold for larger values of 
c/uo (e.g. c = 16u0) which lie outside the main generation region, when is 
reduced. The effect of avariable z,reduces as the amplitude of the waves increases. 
When ak  = 0.157 the results shown in table 4, including the pressure phase shifts 
and the fractional rate of energy input, have returned close to the values predicted 
when xo is constant. Thus the relatively high rates of energy input found in these 
variable xo runs are confined to very small amplitude waves with ak < 0.03 and 
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FIGURE 10. Streamlines for the same run w figure 8. Vertical scale x 10. 

8u0 < c < 12u0. The main change to the flow field is in the horizontal velocity 
profiles near the water surface. 

Figure 8 shows (u - uI)/uo against height for c = 12u0, ak = 0-157, y = 0.75 
and 6 = &r. Although figure 4 has c = 8u0, comparison with figure 8 shows that 
much larger and smaller shears occur in the variable zo computations at positions 
where the surface roughness has its minimum and maximum respectively. 

Longuet-Higgins (19696) points out the effects of a variable shear stress on the 
boundary layer just above the wave surface and upon the wave growth rate. We 
have calculated the rate of work being done by the shear stress in our runs and 
have found that i t  is significant only a t  very small amplitude. This is, however, 
assuming an irrotational flow field in the water with surface velocities given by 
(3.3) and could perhaps be larger if the surface water velocities were modified. 
For the variable zo runs with ak = 0.01, the work done on the wave by shear stress 
was about 15 yo of that done by pressure for 6u0 < c < 14u0. When ale = 0.05 the 
percentage has reduced to about 5% and when ak = 0-157 it  was found that in 
most cases a very small amount of energy was being transferred back from the 
wave to the air by the action of the shear stress. 

Figure 9 shows Cartesian velocities in the frame of reference moving with the 
wave for the same run as figure 8. The vertical scale is increased tenfold and the 
arrows indicate the direction and magnitude of the velocity. It is interesting to 
note that the critical height (above the water surface), where the horizontal 
component of velocity is zero, is considerably smaller over the crest than over the 
trough. Figure 10 shows the streamline pattern from the same run and, compared 
with figure 5 ,  shows a much thicker region of closed streamlines. This is a conse- 
quence of the higher value of c/uo. The centre of the closed-streamline cell is 
slightly farther from the trough compared with the case with c = 8u0 and zo 
constant. 



Air $ow above water waves 123 

For variable zo, the pressure phases and fractional energy input rates appear 
to be closer to observations, although this statement cannot be made definitively 
because of the large scatter in observational results. A comparison is made in 
the next section. 

6. Comparison with other studies 
The present work can be considered as an extension of Townsend’s (1972) 

linear theory. The differences between the predictions of the two studies for 
small amplitude waves are generally small and probably can be attributed to the 
different closure hypotheses used. However, there is a possibility that Townsend’s 
linearized treatment of the lower boundary condition on horizontal velocity 
(equation (3.6) of his paper) may lead to some inaccuracy in his results. This 
would be most pronounced for the higher values of U&. We find that linearization 
is only valid for ak less than about 0.05. For higher amplitudes, nonlinear effects 
give rise to changes in the magnitude and phase of the field quantities, especially 
pressure, as shown in tables 1, 2 and 3. 

On the experimental side, the present theory of flow over a two-dimensional 
monochromatic wave is, perhaps, most appropriately compared to a laboratory 
situation where such a wave can be generated. In  the sea, where a broader, two- 
dimensional spectrum of waves will be present, we need to be rather cautious in 
making direct comparisons in view of our claim that nonlinear effects can be 
important. Shemdin (1969), working a wind-water tunnel, has measured velocity 
profiles and pressure fields using wave-following instruments above essentially 
monochromatic waves with ak N 0.1. The streamline diagrams shown in 
Shemdin’s report (figures 18-23) agree qualitatively with our findings. Both 
show a deep region of closed streamlines well above the wave surface when c/uo 
is large changing to a narrow closed-streamline region just above the wave 
surface when c/uo becomes small. I n  fact, Shemdin’s figure 42 shows quite good 
agreement with our figure 5 in that the centre of the closed-streamline region is 
just backward from the wave trough. Despite this qualitative agreement all 
Shemdin’s velocity profiles have a, pronounced maximum at a height of about 
0 . 5 ~  above the wave surface which is not present in any of our computations. 
One possible explanation for this velocity maximum and other differences with 
our theory is that the measurements were taken after the wind had blown over 
only one or two waves and so may not have had sufficient time to reach a steady 
state in the frame of reference moving with the wave. In  later work Shemdin & 
Lai (1 973) find a less pronounced velocity maximum. There is also evidence in 
their figures 48 and 50 to support our use of a variable roughness length since 
they show an increase and decrease in velocity shear a t  the wave trough and crest 
respectively as shown in our figure 8. Comparison with the pressure results is more 
difficult since Shemdin (1969) finds a large scatter in the Miles (1959) p parameter, 
which governs the fractional rate of energy input. Shemdin concludes, however, 
that when c > 6u0 Miles’ theory underestimates the fractional rate of energy 
input found in his experiments. This conclusion agrees with our results for a 
variable roughness length. 
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Another laboratory investigation was carried out by Kendall (1970), who 
measured the flow over twelve sinusoidal waves with ak = 0.196. These were not 
water waves but were made from a smooth Neoprene sheet which could be made 
to move in a wavelike fashion. He obtained surface pressure measurements and 
plotted the phase shift of the pressure distribution compared with the wave 
trough against cIum in his figure 5 (b) .  When cis zero, he gives a value of lo", which 
is close to our prediction of 13" when c = 0 and ak = 0.157. Kendall's values for 
the phase shift increase to a value of 85" when c = 0 . 3 7 ~ ~  whereas table 2 shows 
that our predicted phase shift is 85" for ak = 0.157 when c = 12u, or clU, = 0.44. 
Kendall's velocity and some shear stress results were obtained from instruments 
fixed at certain heights above the average wave surface. Thus observations could 
be taken very close to  the wave crest but must always be at least 2a away from 
the trough. Measurements of horizontal velocity, his figure 7 (b ) ,  show large 
fluctuations near the wave crest mainly as a result of vertical shear. Similarly his 
figure 11 (a) shows shear stress measured along a horizontal line approximately 
+a above the wave crest, and has a double peak. Similar features are found if we 
plot our results in this way but merely serve to illustrate how difficult it is to 
interpret measurements made at a fixed height compared with those from wave- 
following instruments. Altogether there seems to be reasonable agreement 
betYween our results and Kendall's (1970) observations. 
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FIGURE 12. Fractional rate of energy gain per radian advance in phase, 
Q against UJc. Same notation as figure 11. 

The observations of the wind wave generation process at sea include those of 
Dobson (1971), Elliott (1972) and Snyder (1974), who have measured, either 
directly or by extrapolation to the water surface, the rate of energy input to the 
waves. Using Fourier analysis, most have measured the phase lag of pressure 
components compared with the wave surface which, we predict, are dependent 
upon the wave amplitude. These phase lag results, including the maximum phase 
difference of Dobson, are summarized in figure 11, which shows the phase 
difference compared with the wave trough against U&. Our results, for variable 
zo and 6 = &r, lie along the lines shown joining the results for ak = 0.01 and 
y = 0.5 and for ak = 0.157 and y = 0.75. Again we have set U, = 27u0. When 
ak = 0.01, the maximum pressure phase shift is significantly reduced and occurs 
at a lower value of c/uo compared with the constant zo values; see figure 6. The 
maximum is about 45" when c = llu, compared with about 90" when c = 16u0 
for constant 2,. For c < lOu, the phase shift reduces slowly, whereas for c > 12u0 
it reduces sharply with the pressure 'cut-off' (see Elliott 1972) a t  about c = 16u0. 
This value is smaller than the corresponding value of c = 18uo when zo is constant. 
For ak = 0.01 and variable zo, the results follow the observational curve of 
Elliott fairly closely. When ak = 0.157, however, the variable zo results only 
differ slightly from those for constant 2,; compare figures 6 and 11; and the 
pressure 'cut-off' occurs at about c = 18u0. With our chosen values of zo and R 
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[see (4.1)], this ‘cut-off’ lies in the range 1.5 < U5/c < 1-7 depending upon 
amplitude. An increase in zo would reduce the value of U5/c and vice versa. Also, 
evidence from Townsend’s (1972) table 2 for R = 10 and 12 suggests that for 
longer wavelengths (higher R) the ‘cut-off’ occurs at higher values of c/uo and 
thus at lower values of U,/c.  Snyder (1974) finds the ‘cut-off’ when U,/c = 1.2 
whereas Elliott’s (1972) value is U5/c = 2. Elliott relates the occurrence of this 
‘ cut-off’ to the height of the critical layer compared with the wave amplitude, 
but we believe this to be misleading. 

I n  figure 12 the fractional rate of energy gain per radian advance in phase, g, 
is plotted against U5/c. Our results are for variable z,, with 6 = in as in figure 11.  
The smaller values of 5 occur with the larger amplitude (ak = 0.157) except for 
c = 16u,. The figure shows that the onset of generation is predicted to occur when 
U5/c reaches approximately 1.6, which is, of course, where the pressure phase 
becomes positive. Also plotted on figure 12 are the observations from three field 
experiments. Dobson (1971) found an energy input rate large enough to match 
the observed rates of wave growth measured by Snyder & Cox (1966) and Barnett 
& Wilkerson (1  967). All subsequent observations, however, have given much 
lower rates. Snyder (1974) finds the energy input rate to be of the same order of 
magnitude as the theories of Miles and Townsend, whereas Elliott (1972) found 
a rate of about twice that given by linear theories. The curve based on Elliott’s 
values bisects most of our intervals, and his observations give the best agreement 
with our results. 

As Townsend (1972) pointed out, the critical layer is “merely an unimportant 
part of an equilibrium layer if turbulent stresses are included through the 
turbulent energy equation”. Thus he was surprised that the fractional rates of 
energy gain per radian advance in phase he found were very similar to those of 
the Miles (1959) laminar critical-layer model, Further development of the Miles 
theory was made by Phillips (1966, $4.3) and Miles (1967), both of whom added 
an extra energy input term due to the turbulent nature of the flow. Townsend’s 
results indicate, however, that this term must be relatively small in the range 
0 < c < 20u0, and all three predict fractional energy input rates that are similar 
to those found in this work when the roughness length is constant and the wave 
amplitude is small or large. When the roughness length varies along the wave, 
however, and 8u0 < c < 1224,’ we predict much larger fractional energy input 
rates when the wave amplitude is small. Whether the roughness length is constant 
or varying, the facts that the velocity profile 0 is a function of 5 as well as p, and 
that c > 0 imply that there must be a region of closed streamlines above the 
waves which encompasses the critical layer, as shown in figures 5 and 10. The 
Reynolds stresses are non-zero through the critical layer and so direct comparison 
with laminar critical-layer models is again difficult. They include those of 
Benney & Bergeron (1969) and Davis (1969), who both matched their inviscid 
laminar solutions across the critical layer by including the nonlinear terms rather 
than employing the more traditional method of including the viscous terms to 
give an Orr-Sommerfeld type of equation. Both these theories of the structure 
of closed streamlines around the critical layer have the Reynolds stresses 
everywhere zero. 
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7. Conclusions 
There are two main conclusions to be drawn from the present model. The first 

is that with constant surface roughness, increasing wave amplitude does not 
produce an increased rate of fractional energy input to the waves. In  fact, 6 
decreases slightly as ak increases. It should be remarked, however, that for high 
amplitude the form drag or pressure contribution to the horizontal stress on the 
water surface is a significant fraction of the total. As an extreme example, the 
pressure contribution is more than 50 % when c = 8u, and ak = 0-314. Thus the 
value of 6 obtained from this run is over half the maximum possible value for a 
given total horizontal stress on the lower surface. 

The second conclusion is that if the surface roughness is allowed to vary along 
the wave, then at small amplitudes the values of the fractional rate of energy 
input are found to be up to three times the rates predicted by the linear, constant 
z,, theories. The effect of varying zo decreases with increasing amplitude, so that 
when ak = 0.157 the predicted fractional energy input rate is only just greater 
than that predicted for constant surface roughness. 

Finally, it should be noted that even at the largest amplitude used, ak = 0.314, 
the surface shear stress never fell to zero a t  any point along the wave. 

The turbulence model and form for z, used in this paper are open to criticism. 
Refinements could be made but more detailed observations of the flow over 
water waves are needed as guidance. One possibility is to include streamline 
curvature effects by analogy with buoyancy effects in the atmosphere. These have 
been studied by Bradshaw (1973) and used in the work of Taylor eb al. (1976). 
We feel, however, that the relative simplicity of the model used here does not 
invalidate the two main conclusions of this work. 

The authors are very grateful to Prof. K. Hasselmann and Prof. M. S. Longuet- 
Higgins for several helpful discussions and wish to acknowledge the support of 
the Natural Environment Research Council under grant GR3/1932. 
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